metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yan-Ping Du^a and Man-Cheng Hu^b*

^aSchool of Environment and Chemical Engineering, Xi'an University of Engineering Science and Technology, Xi'an 710068, People's Republic of China, and ^bSchool of Chemistry and Materials Science, ShaanXi Nomal University, Xi'an 710062, People's Republic of China

Correspondence e-mail: hmch@snnu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.036 wR factor = 0.129 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Potassium 3,5-dinitrobenzoate

The title compound, $K^+ \cdot C_7 H_3 N_2 O_6^-$, crystallized from aqueous solution, is not isostructural with sodium 3,5-dinitrobenzoate. Both the anion and the cation lie on a twofold axis. The K⁺ cation is surrounded by eight O atoms and the crystal structure is stabilized by π - π interactions.

Comment

During work on crystallization, potassium 3,5-dinitrobenzoate, (I), was obtained as single crystals by evaporation of an aqueous solution at room temperature, and its structure determined. Probably due to the difference in the radii of K⁺ and Na⁺ cations, compound (I) is not isostructural with the Na salt, sodium 3,5-dinitrobenzoate, whose structure has been reported in the space group $P3_121$ (Jones *et al.*, 2005).

The structure of (I) is shown in Fig. 1. The K^+ cation and 3,5dinitrobenzoate anion lie on a twofold axis. All atoms of the 3,5-dinitrobenzoate anion are almost coplanar, as observed in the corresponding Na⁺ salt. The crystal structure is essentially

Figure 1

The ions and complete coordination of the K⁺ cation of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Atoms with the suffixes A, B, C, D and E are at the symmetry positions $(1 - x, y, \frac{1}{2} - z), (\frac{1}{2} - x, \frac{1}{2} + y, -\frac{1}{2} - z), (\frac{1}{2} + x, \frac{1}{2} + y, z + 1), (-x + 1, -y + 1, -z)$ and $(x, -y + 1, \frac{1}{2} + z)$, respectively.

© 2006 International Union of Crystallography All rights reserved Received 2 December 2005 Accepted 6 February 2006 ionic, and each K⁺ cation interacts with eight O atoms belonging to nitro and carboxylate groups of four symmetryrelated anions (Table 1). The crystal packing is stabilized by intermolecular π - π interactions (4.05 Å) between aromatic rings (Fig. 2), forming a layer structure.

Experimental

3,5-Dinitrobenzoic acid (14.1 mmol) was added to a solution of KOH (14.1 mmol) in water (10 ml). The mixture was stirred for 2 h at 298 K. The solution was then filtered under reduced pressure and set aside for crystallization. After 7 d, pure colourless crystals of (I) were collected from the filtered solution.

 $D_r = 1.791 \text{ Mg m}^{-3}$

Cell parameters from 1239

Mo Ka radiation

reflections

 $\theta = 3.0-27.6^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$

T = 298 (2) K

Block, colourless

 $0.45 \times 0.32 \times 0.25$ mm

Crystal data

 $\begin{array}{l} {\rm K}^{+}{\rm C}_{7}{\rm H}_{3}{\rm N}_{2}{\rm O}_{6}^{-} \\ M_{r} = 250.21 \\ {\rm Monoclinic, } C2/c \\ a = 10.150 \ (3) \ {\rm \AA} \\ b = 17.715 \ (4) \ {\rm \AA} \\ c = 7.066 \ (2) \ {\rm \AA} \\ \beta = 133.075 \ (3)^{\circ} \\ V = 928.1 \ (4) \ {\rm \AA}^{3} \\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area-detector
diffractometer809 independent reflections
667 reflections with $I > 2\sigma(I)$
 φ and ω scans φ and ω scans $R_{int} = 0.019$ Absorption correction: multi-scan
(SADABS; Sheldrick, 2002) $\theta_{max} = 25.0^{\circ}$
 $h = -12 <math>\rightarrow 11$
 $T_{min} = 0.777, T_{max} = 0.867$ Z_{33} measured reflections $l = -8 \rightarrow 8$

Refinement

 $\begin{array}{ll} \text{Refinement on } F^2 & w = 1/[\sigma^2(F_{\text{o}}^2) + (0.0885P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.036 & w + 0.7104P] \\ wR(F^2) = 0.129 & \text{where } P = (F_{\text{o}}^2 + 2F_{\text{c}}^2)/3 \\ S = 1.00 & (\Delta/\sigma)_{\text{max}} < 0.001 \\ 809 \text{ reflections} & \Delta\rho_{\text{max}} = 0.21 \text{ e } \text{ Å}^{-3} \\ 75 \text{ parameters} & \Delta\rho_{\text{min}} = -0.22 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Selected bond lengths (Å).

K1 01 ⁱ	2 636 (2)	K1 O2 ⁱⁱ	2 021 (2)
K1-01	2.801 (2)	K1 = 03 $K1 = 02^{ii}$	3.034 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z + 1.

Figure 2

The packing arrangement in the crystal structure of (I). Dashed lines indicate intermolecular π - π interactions.

H atoms were placed in calculated positions and refined as riding, with C-H distances constrained to 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Natural Science Foundation of China (No. 20471035) is acknowledged.

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, m1131– m1132.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.

Sheldrick, G. M. (2001). *SHELXTL*. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.